Hastakshep.com-देश-Biofuel-biofuel-green house gas emission-green-house-gas-emission-IIT Hyderabad-iit-hyderabad-machine learning algorithms-machine-learning-algorithms-आईआईटी हैदराबाद-aaiiaaiittii-haidraabaad-कृत्रिम बुद्धिमत्ता-krtrim-buddhimttaa

IIT Hyderabad Researchers use Machine Learning algorithms to study Supply Chain Network of Biofuels

नई दिल्ली, 2 जुलाई (उमाशंकर मिश्र): जीवाश्म ईंधन के घटते भंडार और इसके उपयोग से होने वाले प्रदूषण से जुड़ी चिंताओं ने दुनिया को वैकल्पिक ईंधन की खोज तेज करने के लिए प्रेरित किया है। जीवाश्म ईंधन के स्थान पर जैविक ईंधन के उपयोग की इस बढ़ती आवश्यकता (Increased need for use of organic fuels in place of fossil fuels) को देखते हुए भारतीय प्रौद्योगिकी संस्थान (आईआईटी) हैदराबाद के शोधकर्ता कृत्रिम बुद्धिमत्ता (Artificial Intelligence) आधारित ऐसी कम्प्यूटेशनल विधियों का उपयोग कर रहे हैं जो देश के ईंधन क्षेत्र में जैव ईंधन को शामिल करने से जुड़े कारकों और बाधाओं को समझने में मददगार हो सकती हैं।

Biofuel Supply Chain Network Design and Operations

आईआईटी हैदराबाद के शोधकर्ताओं द्वारा किए जा रहे इस कार्य की एक विशेषता यह है कि इसके ढाँचे में केवल जैविक ईंधन की बिक्री को राजस्व सृजन का आधार नहीं माना गया है, बल्कि इसके अंतर्गत पूरी परियोजना के चक्र में ग्रीनहाउस गैसों के उत्सर्जन में कटौती के माध्यम से कार्बन क्रेडिट को भी शामिल किया गया है। यह अध्ययन शोध पत्रिका क्लीनर प्रोडक्शन में प्रकाशित किया गया है।

शोधकर्ताओं द्वारा विकसित मॉडल से पता चला है कि मुख्यधारा के ईंधन उपयोग में बायो-एथेनॉल क्षेत्र को शामिल करने पर उत्पादन पर सबसे अधिक 43 प्रतिशत खर्च का आकलन किया गया है। जबकि, आयात पर 25 प्रतिशत, परिवहन पर 17 प्रतिशत, ढाँचागत संसाधनों पर 15 प्रतिशत और इन्वेंटरी पर 0.43 प्रतिशत खर्च का आकलन किया गया है।

इस मॉडल ने यह भी दिखाया है कि अनुमानित माँग को पूरा करने के लिए कुल क्षमता के कम से कम 40 प्रतिशत तक फीड उपलब्धता की आवश्यकता है।

आईआईटी हैदराबाद के केमिकल इंजीनियरिंग विभाग के प्रमुख शोधकर्ता डॉ किसलय मित्रा ने कहा है, “भारत में, गैर-खाद्य स्रोतों से उत्पन्न जैविक

ईंधन कार्बन-न्यूट्रल नवीकरणीय ऊर्जा का सबसे आशाजनक स्रोत है। इन दूसरी पीढ़ी के स्रोतों में कृषि अपशिष्ट जैसे- पुआल, घास और लकड़ी जैसे अन्य उत्पाद शामिल हैं, जो खाद्य स्रोतों को प्रभावित नहीं करते हैं।”

शोधकर्ताओं की टीम ने देश के कई क्षेत्रों में जैविक ऊर्जा उत्पादन के लिए उपलब्ध विभिन्न तकनीकों पर विचार किया है। इसके साथ-साथ, शोधकर्ताओं ने आपूर्तिकर्ताओं, परिवहन, भंडारण और उत्पादन के आंकड़ों का उपयोग करके इसकी व्यवहार्यता का भी अध्ययन किया है।

इस शोध के बारे में विस्तार से बताते हुए आईआईटी हैदराबाद के रिसर्च स्कॉलर कपिल गुमटे ने कहा,

“हम आपूर्ति श्रृंखला नेटवर्क को समझने के लिए मशीन लर्निंग की तकनीक का उपयोग कर रहे हैं। मशीन लर्निंग कृत्रिम बुद्धिमत्ता की एक शाखा है, जिसमें कंप्यूटर उपलब्ध डेटा से पैटर्न को सीखता है और भविष्य के लिए सिस्टम और भविष्यवाणियों की समझ विकसित करने के लिए स्वचालित रूप से अपडेट होता है।”

डॉ मित्रा ने कहा है कि “देशव्यापी बहुस्तरीय आपूर्ति श्रृंखला नेटवर्क पर तकनीकी-आर्थिक-पर्यावरणीय विश्लेषण और मशीन लर्निंग तकनीकों का उपयोग मांग पूर्वानुमान, आपूर्ति श्रृंखला मापदंडों में अनिश्चितता और उसके कारण परिचालन पर पड़ने वाले प्रभाव एवं दूरगामी निर्णय लेने में उपयोगी हो सकता है।” (इंडिया साइंस वायर)